ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

С.И. Любая, М.А. Афанасьев, Стародубцева Г.П., Яновский А.А.

<u>ЛАБОРАТОРНЫЙ ПРАКТИКУМ</u> <u>по ЭЛЕКТРИЧЕСТВУ, МАГНЕТИЗМУ и ОПТИКЕ</u>

13.03.02. — Электроэнергетика и электротехника бакалавр

УДК 53(076) ББК 22.3я 7 Б 742

Рецензенты:

Кандидат технических наук, доцент СтГАУ Рубцова Е.И. Кандидат физико-математических наук, доцент СКФУ Хащенко А.А.

Печатается по рекомендации методической комиссии Электроэнергетического факультета (протокол № 6 от 11 января 2021 г.)

С.И. Любая, М.А. Афанасьев, Стародубцева Г.П.

Лабораторный практикум по электричеству и магнетизму для специальности 13.03.02 - Электроэнергетика и электротехника (бакалавр). Учебно-методическое пособие для студентов аграрных высших учебных заведений. — Ставрополь, 2020.- 52 с.

УДК 53(076) ББК 22.3я7 Б 742

СОДЕРЖАНИЕ

Введение		
Лабораторая рабо	oma №1	
ИССЛЕДОВАНИ	ІЕ ЭЛЕКТРОСТАТИЧЕСКОГО	О ПОЛЯ6
Лабораторая рабо		
1 1 1	ТЕРМОЭЛЕМЕНТА	13
Лабораторная раб		
1 1 1	ТЕМПЕРАТУРНОЙ	ЗАВИСИМОСТИ
СОПРОТИВЛЕН	ІИЯ ПРОВОДНИКОВ	
	НИКОВ	17
Лабораторная раб	бота №4	
1 1 1	ВИЛ КИРХГОФА	26
Лабораторная раб		
1 1 1	УДЕЛЬНОГО ЗАРЯДА	
, ,	ЕТОДОМ МАГНЕТРОНА	30
Лабораторная раб	, ,	
	ПОКАЗАТЕЛЯ ПРЕЛОМЛЕ	ния жидкости с
	ФРАКТОМЕТРА	
Лабораторная рас		
ОПРЕ ДЕЛЕНИЕ	ОПТИЧЕСКОЙ СИЛЫ ЛИНЗ	Ы 41
Лабораторная рас		
	ИЯ СВЕТА	45
Лабораторная раб	•	
	BETA	48
P		

Введение

1. Цели освоения дисциплины

Целями освоения дисциплины «Физика» являются:

Освоение знаний о механических, тепловых, электромагнитных и квантовых явлений; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы.

Овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы; применять полученные знания для объяснения принципов действия технических устройств; для решения физических задач.

Развитие познавательных интересов, интеллектуальных и творческих способностей в ходе решения физических задач и выполнения лабораторных работ; способности к самостоятельному приобретению новых знаний в соответствии с жизненными потребностями и интересами.

Воспитание убежденности в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества.

Применение полученных знаний и умений для решения практических задач повседневной жизни, для обеспечения безопасности своей жизни.

2. Место дисциплины в структуре образовательной программы бакалавриата

Учебная дисциплина «Физика» относится к циклу дисциплин Б1.Б.6 и является обязательной дисциплиной базовой части образовательной программы.

Для успешного освоения дисциплины должны быть сформированы компетенции ОПК-2 и ПК-2 на пороговом уровне.

Для изучения данной учебной дисциплины необходимы следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

- школьный курс физики.

Знания: смысл основных физических понятий; основные физические законы классической механики, термодинамики, электродинамики и квантовой теории.

Умения: описывать и объяснять физические явления и свойства тел; отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры практического использования физических законов; воспринимать и на основе полученных знаний самостоятельно оценивать информацию.

Навыки: использования полученных знаний и умений в практической деятельности для: обеспечения безопасности жизнедеятельности в процессе использования бытовых электроприборов, радио- и телекоммуникационной связи; оценки влияния на организм

человека и другие организмы загрязнения окружающей среды; рационального природопользования и защиты окружающей среды.

Перечень последующих учебных дисциплин, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной:

- автоматика;
- электрические машины;
- электроника;
- метрология;
- электрические и электронные аппараты;
- нетрадиционные источники энергии.

3. Требования к результатам освоения содержания дисциплины

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО по данному направлению:

- а) общепрофессиональных (ОПК-2):
- Способностью применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач.
- б) профессиональных (ПК-2):
- Способностью обрабатывать результаты экспериментов.

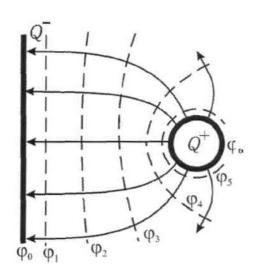
В результате освоения дисциплины обучающийся должен:

знать:

- основные физические явления и законы механики, электротехники, теплотехники, оптики и ядерной физики и их математическое описание; **уметь:**
- выявлять физическую сущность явлений и процессов в устройствах различной физической природы и выполнять применительно к ним простые технические расчеты;

владеть:

- инструментарием для решения физических задач в своей предметной области; методами анализа физических явлений в технических устройствах и системах.


Лабораторая работа №1 ИССЛЕДОВАНИЕ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

ЦЕЛЬ: построение картины силовых линий и эквипотенциальных поверхностей исследуемого электростатического поля, определение напряженности исследуемой точки поля.

ОБОРУДОВАНИЕ: генератор постоянных напряжений, слабопроводящая пластина с электродами, зонд, стрелочный вольтметр.

Введение

Электрический заряд создает в окружающем пространстве поле - особую форму материи, посредством которой осуществляется взаимодействие между электрическими зарядами. Пространство, в котором есть электрическое поле, является областью проявления электрических сил. Электростатическое поле в Eзначениями напряженности точке характеризуется каждой силовой энергетической потенциала которые являются φ, характеристиками поля в данной точке. Электрическое поле можно изобразить графически с помощью силовых линий. Силовая линия - это линия, касательная к которой в каждой точке совпадает с вектором напряженности электрического поля. Силовые линии не пересекаются, так как напряженность поля в каждой точке имеет одно определенное направление. Для графического изображения поля можно использовать либо силовые линии, эквипотенциальные поверхности. Эквипотенциальной поверхностью называют геометрическое место точек одинакового потенциала.

Ha рис. 1 показаны силовые (сплошные) И эквипотенциальные (пунктирные) линии электростатического поля, созданного заряженной плоскостью и точечным зарядом. Эквипотенциальные изображены линии эквипотенциальных сечении поверхностей плоскостью чертежа. Эквипотенциальные поверхности проводят с одинаковым шагом $\Delta \varphi$. Как и силовые линии, они не пересекаются, так как каждой точке поля соответствует только одно значение φ .

Рис. 1. Картина эквипотенциальных и силовых линий

Перемещение заряда вдоль эквипотенциальной поверхности не требует совершения работы: $A = Q \cdot \Delta \varphi = 0$, так как $\Delta \varphi = 0$. С другой строны, работа силы F на элементарном перемещении dl

$$A = \int_{1}^{2} F \cdot dl \cdot \cos\alpha, \tag{1}$$

откуда следует, что при $F \neq 0$ и $dl \neq 0$ величина $\cos \alpha = 0$.

Это означает, что действующая на заряд сила перпендикулярна перемещению вдоль поверхности равного потенциала. Следовательно, силовые линии перпендикулярны любой эквипотенциальной поверхности (рис. 2).

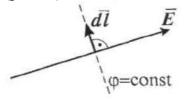


Рис. 2. Расположение силовых (сплошная) и эквипотенциальных (пунктирная) линий

Связь потенциала с напряжённостью поля в данной точке выражается соотношением

$$\vec{E} = - \overrightarrow{grad} \, \varphi, \tag{2}$$

где

$$\overrightarrow{grad} \varphi = \frac{d\varphi}{d\chi} \overrightarrow{i} + \frac{d\varphi}{d\gamma} \overrightarrow{j} + \frac{d\varphi}{dz} \overrightarrow{k}$$
 (3)

Градиент функции φ (*x,y,z*) есть вектор, направленный в сторону максимального возрастания этой функции, модуль которого равен производной функции φ по тому же направлению:

$$\overrightarrow{grad} \varphi = \frac{d\varphi}{dn} \overrightarrow{n}, \tag{4}$$

где n — единичная нормаль к эквипотенциальной поверхности.

Таким образом, из выражений (2) и (4) следует, что *вектор* напряженности электростатического поля в каждой точке численно равен быстроте изменения потенциала вдоль силовой линии и направлен в сторону убывания потенциала:

$$\vec{E} = -\frac{d\varphi}{dn} \, \vec{n} \,. \tag{5}$$

Метод исследования поля

При конструировании многих электронных приборов требуется изучение электростатического поля в пространстве, заключённом между электродами. Изучить поле — это значит определить в каждой его точке значения \vec{E} и ϕ возможен лишь в случае полей, создаваемых электродами простой конфигурации. Сложные электростатические поля исследуют экспериментально.

Для изучения полей используют экспериментальные методы их моделирования. Один из них основан на применении слабопроводящей пластины с электродами. Электростатическое поле заменяют электрическим полем, в котором на электроды подают такие же потенциалы, как и в моделируемом поле. Несмотря на движение заряженных частиц, плотность зарядов на электродах постоянна, так как на место зарядов, уходящих по слабопроводящей пластинке, непрерывно поступают новые. Поэтому заряды электродов создают в

пространстве такое же электрическое поле, как и неподвижные заряды той же плотности, а электроды являются эквипотенциальными поверхностями. Использование пластины позволяет применять токоизмерительные приборы, более простые и надежные в работе, чем электростатические.

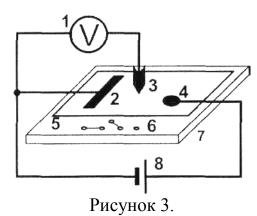
При исследовании поля находим положение эквипотенциальных поверхностей, используя для измерения потенциалов точек поля метод зонда. Электрический зонд представляет собой остроконечный проводник, который помещают в ту точку, где нужно измерить потенциал. В проводящей среде потенциал зонда равен потенциалу исследуемой точки поля.

Полученная картина эквипотенциальных поверхностей исследуемого поля позволяет провести силовые линии (ортогонально поверхностям) и вычислить значение напряженности E в любой точке по формуле (5), как среднее значение на участке длины Δn :

$$E \approx - \left| \frac{\Delta \varphi}{\Delta n} \right| = \frac{\varphi_1 - \varphi_2}{\Delta n} \,, \tag{6}$$

где φ_1 и φ_2 - потенциалы соседних эквипотенциальных поверхностей, Δn - кратчайшее расстояние между ними (по нормали).

В настоящей работе для изучения электростатического поля используют метод слабопроводящей пластины.

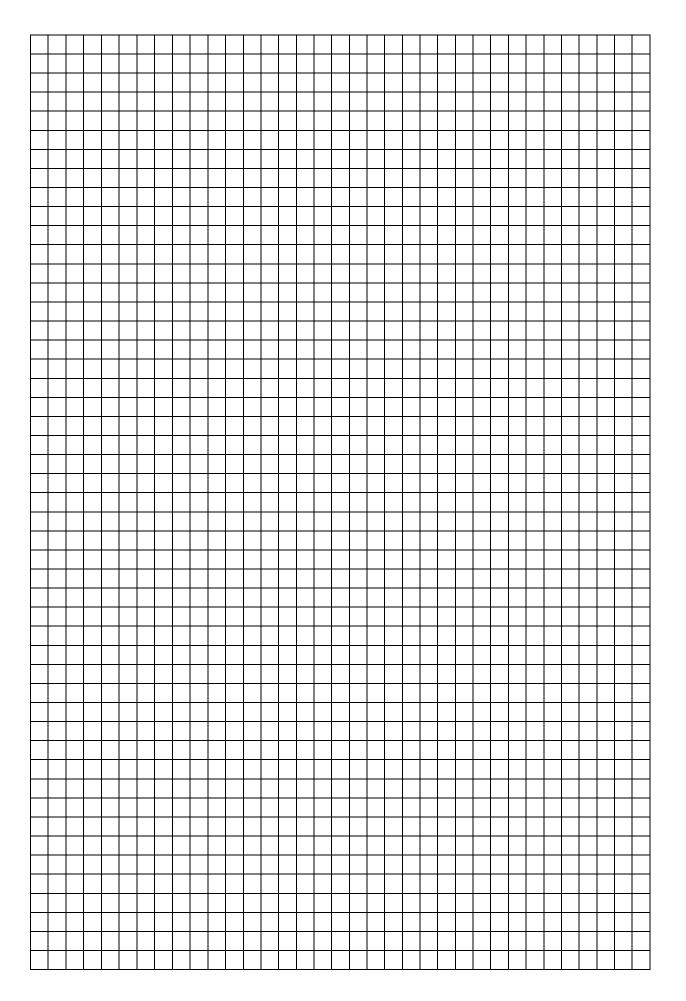

Описание установки

При конструировании многих электронных приборов требуется изучить электростатическое поле в пространстве заключенном между электродами. Изучить поле — это значит определить в каждой его точке значение вектора напряженности \vec{E} и потенциала ϕ . Теоретический расчет этих величин возможен только в случае полей, создаваемых электродами простой конфигурации. Сложные поля исследуют экспериментально.

Для изучения полей используют методы моделирования. Один из них основан на применении слабопроводящей среды с электродами заданной формы. Электростатическое поле заменяют электрическим полем в котором на электроды подают такую же разность потенциалов, как и в моделируемом поле. Несмотря на движение заряженных частиц, плотность зарядов на электродах постоянна, так как на место зарядов, уходящих по слабопроводящей среде, непрерывно поступают новые. Поэтому заряды электродов создают в пространстве такое же электрическое поле, как и неподвижные заряды. Применение слабопроводящей среды позволяет использовать токопроводящие приборы, более простые и надежные, чем электростатические.

При исследовании полей находят положение эквипотенциальных поверхностей, используя для этого метод зонда. Электрический зонд представляет собой остроконечный проводник, который помещают в ту точку, где нужно определить потенциал. В слабопроводящей среде потенциал зонда равен потенциалу исследуемой точки поля. Зная положение эквипотенциальных поверхностей можно провести силовые линии поля, так как они всегда перпендикулярны эквипотенциальным поверхностям.

Электрическая схема установки приведена на рисунке.



Выполнение работы

- 1. На лист миллиметровой бумаги нанесите контуры электродов (в натуральную величину) и координатную сетку, иден-тичную имеющейся на установке.
- 2. Собрать электрическую схему изобра-женную на рисунке.
- 3. Включить питание генератора посто-янного тока. Нажать кнопку «Исходная установка».
- 4. Кнопками установки напряжения (0....15 В) установите потенциалы электродов (по заданию преподавателя), контролируя их вольтметром.
- 5. Касаясь электродов зондом, определите какой электрод имеет нулевой потенциал.
- 6. Возле электрода с нулевым потенциалом найдите точку, имеющую потенциал 1 В и нанесите ее на картину поля. Перемещая зонд по полю, определите координаты не менее 8-10 точек, имеющих тот же потенциал и нанесите их на миллиметровку. Соедините эти точки плавной кривой и напишите значение потенциала.
- 7. По пункту 6 произвести измерения для остальных эквипотенциальных поверхностей с шагом 1 В.
- 8. Выключить питание генератора тока.

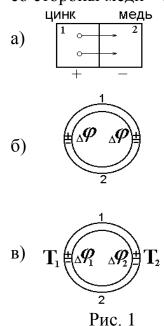
Обработка результатов

- 1. На картине исследуемого поля нанесите силовые линии поля, перпендикулярные эквипотенциальным поверхностям.
- 2. Постройте график звисимости потенциала точки от расстояния до электрода с нулевым потенциалом, т.е. график $\varphi = f(r)$.
- 3. Для 3 4 точек поля (выбранных в различных местах пластины) рассчитать значение напряженности поля по формуле $E = -\frac{\Delta \phi}{d}$, где d расстояние между двумя эквипотенциальными поверхностями вдоль силовой линии.

ВЫВОД:
Контрольные вопросы 1. От чего зависит сила, действующая на заряд, помещенный в даннун точку поля?
2. Дайте определение силовой линии поля.
3. Каковы основные свойства силовых линий поля?
4. Какое поле называется однородным?
5. Что называется потенциалом поля в данной точке?
6. Дайте определение эквипотенциальной поверхности.
7. Выведите формулу, связывающую напряженность электростатическог поля и потенциал.
8. От чего зависит работа по перемещению заряда в электростатическом поле?
Студент Количество баллов
Дата защиты Подпись преподавателя

Лабораторная работа № 2 ГРАДУИРОВКА ТЕРМОЭЛЕМЕНТА

Цель работы: привести измерения и построить градуировочный график термоэлемента.


Оборудование: мультиметр, термоэлемент, два термометра, сосуды с водой, устройство для нагревания термоспая.

Краткая теория

В металлах имеются свободные электроны, на которые действуют кулоновские силы притяжения со стороны положительных ионов кристаллической решетки. Эти электроны могут свободно двигаться между узлами кристаллической решетки.

Когда электрон покидает пределы кристаллической решетки, возникает избыток положительного заряда, который будет стремиться вернуть электрон в металл. Для того, чтобы выйти на поверхность металла, электрон должен совершить **работу выхода** против сил притяжения электростатического поля, образованного избытком положительного заряда в кристалле. **Работа выхода электрона** — это работа, которую необходимо затратить для удаления электрона из металла в вакуум. Величина работы выхода электрона зависит от вида металла.

Если два различных металла привести в тесное соприкосновение путем сварки или спайки, то между ними будет происходить взаимный переход (диффузия) электронов. В зависимости от величины работы выхода и концентрации зарядов электроны из одного металла, например цинка, будут переходить в другой металл, например медь, в большем количестве, чем обратно. В связи с этим в контактном слое со стороны цинка образуется недостаток электронов, и он заряжается положительно, а со стороны меди – их избыток, и она заряжается отрицательно.

В области соприкосновения металлов возникает контактная разность потенциалов $\Delta \phi$ и образуется электрическое поле. Это поле противодействует дальнейшему переходу электронов (рис. 1а). Если замкнуть противоположные концы рассмотренных проводников, то в месте нового контакта возникает такая же по величине, но противоположная по знаку разность потенциалов $\Delta \varphi$, и тока в цепи не будет (рис. 1б). Иной результат получается, если места соединения металлов имеют различную температуру (рис. 1в). Поскольку диффузия электронов происходит в процессе теплового движения, то в спае с более высокой температурой она будет происходить более интенсивно, контактная разность потенциалов в нем увеличится.

Теперь в общей цепи металлов появится результирующая разность потенциалов, равная разности контактных разностей потенциалов в нагретом и холодном спаях. Эта разность потенциалов называется термоэлектродвижущей силой ε . По величине она прямо пропорциональна разности абсолютных температур нагретого T_1 и холодного T_2 спаев:

$$\varepsilon = \alpha (T_1 - T_2), \quad (T_1 > T_2) \tag{1}$$

где α – коэффициент пропорциональности зависит от природы металлов и называется удельной термоЭДС, которая численно равна термоЭДС, возникающей при разности температур спаев в 1 градус. Из (1) следует:

$$\alpha = \frac{\varepsilon}{T_1 - T_2} \,. \tag{2}$$

Изучением этого явления занимался итальянский ученый **Вольта**, установивший экспериментально **два закона**:

- 1. Контактная разность потенциалов зависит лишь от химического состава и температуры соприкасающихся металлов.
- 2. Контактная разность потенциалов последовательно соединенных различных проводников, находящихся при одинаковой температуре, не зависит от химического состава промежуточных проводников и равна контактной разности потенциалов, возникающей при непосредственном соединении крайних проводников.

Под действием термоЭДС в замкнутой цепи возникает термоток, который может быть зарегистрирован чувствительным прибором.

Два спаянных между собой проводника из различных металлов называются **термопарой** (рис. 2).

Основным применением термопары является измерение температуры. С этой целью составляется цепь, изображенная на рис. 5.

Спай а термопары поддерживается при постоянной известной температуре T_1 . Спай б помещается в среду, температура T_2 , которая подлежит измерению. Зная коэффициент α данной термопары и милливольтметром измеряя Mтермоэлектродвижущую силу ε рассчитываем температуру:

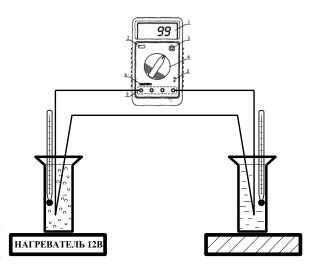


Рис. 2

$$T_2 = (\epsilon + \alpha T_1) / \alpha$$

Термоэлементы имеют большие преимущества перед ртутными и спиртовыми термометрами вследствие малой инерционности и малого размера, что дает возможность измерять температуру малых

биологических объектов (клетки). Они позволяют измерять очень высокие и низкие температуры и широко применяются в технологических процессах пищевой технологии: контроль температуры, замораживания, нагревания. Контроль температуры технологического процесса играет важную роль в поддержании условий способствующих максимальному образованию важных для формирования вина веществ в процессе брожения.

Регистрирующий прибор (мультиметр) можно установить на значительном расстоянии от термоэлемента и следить за изменением температуры любого процесса в динамике, а также вести запись технологических процессов на самописце в течение длительного времени.

Выполнение работы

- 1. Соберите цепь по схеме (рис. 2). При включении цепи мультиметр должен показывать нуль.
- 2. Включите нагреватель. При повышении температуры через каждые пять градусов необходимо снимать показания с мультиметра. Опытные данные занесите в таблицу 1:

Таблица 1

t₁, ⁰C

T₁, K

t₂, ⁰C

T₂, K

ε, B

4. По данным таблицы (опыта) постройте график зависимости $\varepsilon = f(T_2)$.

где	$\alpha = \frac{\Delta \varepsilon}{\Delta t} = \frac{(\varepsilon_2 - \varepsilon_1)}{(t_2^0 - t_1^0)} =$ ε_2 и ε_1 и t_2^0 и t_1^0 соответствуют произвольно выбранным двум точкам на дуировочном графике.
ВЫ	ІВОД:
1)	Контрольные вопросы Что называется термопарой (термоэлементом)? Где она применяется?
2)	Что называется работой выхода электрона?
3) поя	Почему при тесном соприкосновении двух различных металлов вляется контактная разность потенциалов?
4) тем	Зачем при получении термоЭДС необходимо поддерживать пературу спаев различной?
5)	Что называется удельной термоЭДС?

5. Из наклона графика вычислите удельную термоэдс термопары по

формуле:

6) Как читаются законы Вольта?

Студент	Количество баллов
Дата защиты	Подпись преподавателя

Лабораторная работа №3 ИЗУЧЕНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ СОПРОТИВЛЕНИЯ ПРОВОДНИКОВ И ПОЛУПРОВОНИКОВ

ЦЕЛЬ: определение температурного коэффициента сопротивления (ТКС) проводника и ширины запрещенной зоны полупроводника.

ОБОРУДОВАНИЕ: регулируемый источник постоянного напряжения, мини-блоки «Исследование температурной зависимости сопротивления проводника и полупроводника» и «Ключ», мультиметры.

Введение

По электрическим свойствам вещества разделяют на три класса: проводники, диэлектрики и полупроводники. Типичными проводниками являются *металлы*, обладающие малым удельным сопротивлением — менее 10^{-6} Ом·м. Удельное электрическое сопротивление *полупроводников* p обычно лежит в пределах $10^{-6}..10^{-14}$ Ом·м. Материалы, у которых величина p больше 10^{-14} Ом·м , относятся к *диэлектрикам*. Полупроводниками являются ряд элементов III—VI групп таблицы элементов Д.И. Менделеева (B, Ge, Si, As, Te и т.д.), а также большое число химических соединений (GaAs, GaP, ZnS, SiC и др.). В зависимости от внешних условий (температура, давление) одно и то же вещество может относиться к разным классам. Например, германий при температуре жидкого азота 77 К - диэлектрик, при комнатной температуре - полупроводник, а жидкий Ge - проводник.

Теория дает более обоснованную классификацию веществ. Согласно квантовой теории электроны в атоме могут иметь только определенные значения энергии, которые называют энергетическими уровнями. Именно эти уровни при объединении отдельных атомов в кристалл образуют разрешенные энергетические зоны. Промежуток, разделяющий такие зоны, называют запрещенной зоной (рис. 1). Энергетическая зона считается заполненной, если все уровни зоны заняты электронами. При этом согласно принципу Паули на одном энергетическом уровне может находиться не

более двух электронов, имеющих противоположно направленные спины. Зона считается свободной, если не заняты все уровни этой зоны.

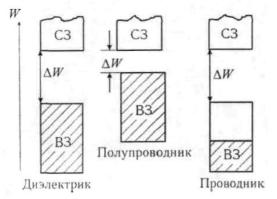


Рис. 1. Энергетические зоны. Обозначения энергетических зон: ВЗ — валентная; СЗ — свободная, ΔW — запрещённая. Штриховкой отмечена заполненная часть зоны (при температуре T=0 K)

Если валентные электроны атомов, ответственные за электрические свойства вещества, образуют полностью заполненную (валентную) зону так, что последующая разрешенная зона (зона проводимости) свободна, то электропроводность такого вещества равна нулю, и оно является диэлектриком. Действительно, при протекании тока в веществе происходит движение электронов под действием внешнего электрического поля, что предполагает увеличение энергии электронов, т.е. переход их на более высокий незанятый энергетический уровень. Эти уровни отсутствуют в случае заполненной валентной зоны, а значит, в веществе с такой зонной структурой электрон не может ускоряться внешним электрическим полем

Для того, чтобы перевести электроны из валентной зоны в зону проводимости, им следует сообщить энергию, не меньшую, чем ширина запрещенной зоны Δ W. Часть электронов приобретает эту энергию при облучении вещества светом или за счет теплового движения атомов. Поэтому при обычных температурах ($T \approx 300 \text{ K}$) в зоне проводимости есть некоторое количество электронов. В зависимости от их концентрации вещество может быть либо диэлектриком, либо полупроводником, причем различие между этими классами определяется значениями ширины запрещенной зоны ΔW и температуры T. Для полупроводников при комнатной температуре Δ W составляет 0,02 - 2 эB, а для диэлектриков - больше 2 эB.

Температурная зависимость проводимости полупроводников определяется изменением концентрации носителей тока - электронов, перешедших в зону проводимости. При увеличении температуры их количество экспоненциально возрастает, поэтому сопротивление R чистых полупроводников уменьшается с ростом температуры T по закону

$$R = A \cdot exp(\Delta W/2kT), (1)$$

где A - величина, слабо зависящая от температуры; κ =1,38·10⁻²³ Дж/К - постоянная Больцмана.

Проводники имеют другую зонную структуру. Валентные электроны заполняют зону примерно наполовину (см. рис. 1), при этом электроны могут свободно перемещаться под действием внешнего электрического поля. Валентная зона является зоной проводимости. В проводнике концентрация свободных электронов не зависит от температуры - в этом основное отличие проводника от полупроводника и диэлектрика. Для проводников зависимость

сопротивления от температуры значительно слабее, чем для диэлектриков. Она определяется рассеянием энергии электронов при взаимодействии с ионами кристаллической решетки. С ростом температуры увеличивается амплитуда колебаний ионов, что ведет к снижению длины свободного пробега электронов проводимости в металле. При этом электрическое сопротивление R проводников увеличивается по линейному закону

$$R = R_0(1+at),(2)$$

где t - температура в градусах Цельсия; R_0 - сопротивление проводника при 0° С; a - температурный коэффициент сопротивления (ТКС).

Методика определения величины ТКС проводника и ширины запрещенной зоны полупроводника

Уравнение (2) температурной зависимости сопротивления проводника в координатах R-t изображается прямой линией, угловой коэффициент которой $K_1=R_a$ а. По величине K_I можно определить значение ТКС исследуемого проводника:

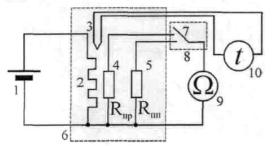
$$a = K_1/R_0, (3)$$

где R_0 - значение R при температуре 0° C определяют путем экстраполяции линейной зависимости до $t=0^\circ$ C.

Величину углового коэффициента экспериментальной зависимости также определяют по графику или с помощью метода наименьших квадратов (см. приложение 1).

Для полупроводника зависимость сопротивления от температуры нелинейная, поэтому для определения ее параметров используют функциональные шкалы $\ln R - 1/T$. Действительно, логарифмируя уравнение (1), получаем

$$\ln R = \ln A + \frac{\Delta W}{2k} 1/T \tag{4}$$


Эта зависимость $\ln R$ от 1/T является линейной с угловым коэффициентом $K_2 = \Delta W/2k$, что позволяет найти ширину запрещенной зоны полупроводника по формуле

$$\Delta W = 2k \cdot K_2 \tag{5}$$

Таким образом, для определения величины ТКС проводника и ширины запрещенной зоны полупроводника ΔW достаточно получить экспериментально температурные зависимости их сопротивления.

Описание установки

Электрическая схема установки показана на рис. 2, монтажная схема - на рис. 3. Рис. 2. Электрическая схема:

1 – регулируемый источник постоянного напряжения (0...+15 В); 2 - электронагреватель; 3 – термопара; 4, 5 – исследуемые образцы проводника и полупроводника; 6 – блок «Исследование температурной

зависимости сопротивления проводника и полупроводника»; 7 — переключатель; 8 — блок «Ключ»; 9 — цифровой мультиметр в режиме измерения сопротивления (режим Ω 2 кОм, входы СОМ, $V\Omega$);10 — цифровой мультиметр в режиме измерения температуры

Электронагреватель 2 подсоединен к регулируемому источнику постоянного напряжения 1 (0...+15 В). При включении источника напряжения начинается нагрев исследуемых образцов. Для измерения сопротивления образцов 4, 5 в режиме непрерывного нагрева их поочередно подсоединяют к цифровому мультиметру 9 с помощью переключателя 7. Температуру образцов измеряют с помощью термопары 3, сигнал с которой подается на мультиметр 10 (разъем для подключения термопары).

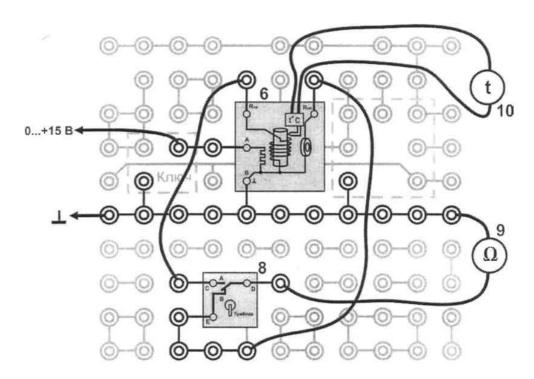
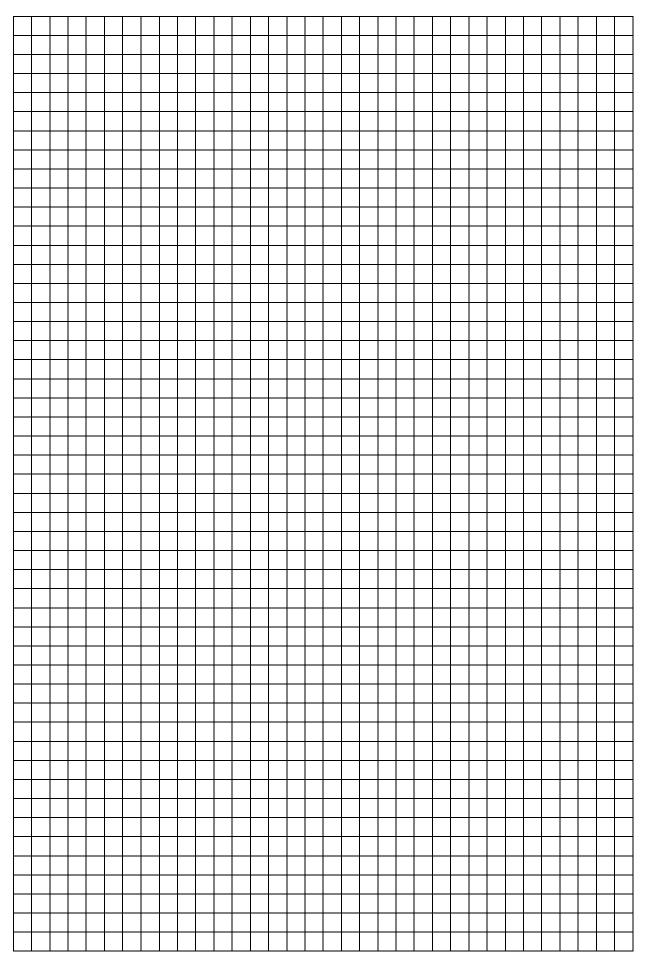


Рис. 3. Монтажная схема установки

Выполнение работы

- 1. Собрать электрическую цепь по схеме рисунка.
- 2. Включить питание блока генераторов напряжения и блока мультиметров. Нажать кнопку «Исходная установка».
- 3. Установить необходимые пределы измерений мультиметров. Учесть, что при измерении сопротивления проводника переключатель диапазонов ставится в положение 200 Ом, а полупроводника 2 кОм.
- 4. Измерьте сопротивление проводника и полупроводника при комнатной температуре, подключая их поочередно к мультиметру.
- 5. Кнопками установки напряжения (0....15 B) установите по индикатору 5 7 делений.
- 6. По мере нагревания образцов, измерьте их сопротивление через каждые 5°C до 60-70°C. Результаты измерений занести в таблицу.

7. Выключить питание.


Таблица

т аолица										
t,°C										
Провод	Проводник									
R, Om										
Полупр	оводни	ζ.								
R, Om										
T,K										
1/T										
ℓnR										

Обработка результатов

- 1. По данным таблицы построить графики зависимости сопротивления проводника и полупроводника от температуры. Ось температур надо начинать с 0°С
- 2. Продолжив график зависимости сопротивления проводника до оси R, определить его сопротивление R_0 при температуре $0^{\circ}C$.
- 3. Выбирая на графике две достаточно удаленные точки по формуле $\alpha = \frac{R_2 R_1}{R_0 \left(t_2 t_1 \right)} \ \text{определить термический коэффициент сопротивления}$ проводника.
- 4. Для полупроводника необходимо построить и график зависимости $\ell nR = f\left(\frac{1}{T}\right).$
- 5. Выбирая на этом графике две точки, по формуле $\Delta E = 2k \frac{\ell n R_1 \ell n R_2}{\frac{1}{T_1} \frac{1}{T_2}}$,

где $k = 1,38 \cdot 10^{-23} \, \frac{\text{Дж}}{\text{K}}$ - постоянная Больцмана, определить ширину запрещенной зоны полупроводника.

ВЫВОД:
Контрольные вопросы 1. От чего зависит сопротивление проводника и полупроводника Запишите формулы этих зависимостей.
2. Чем объясняется температурная зависимость сопротивления проводника от температуры?
3. Собственная проводимость полупроводников и ее зависимость от температуры.
4. Примесная проводимость полупроводников и ее зависимость от температуры.
5. Как можно объяснить сильную зависимость сопротивления полупроводника от температуры?

Да	ата заши	ты		Подпись препо	давателя	
Cn	пудент			Количество ба	ллов	
		1				
		ная теория и диэлектр	объясняет элек иков?	тропроводності	ь металлог	в, полупро-
9.	Как возн	икают энер	гетические зонь	ы в твердых тела	ax?	
	эти зоны?		ие зоны имеютс	я в твердых тел	ax! Nak pa	сположены
0	T.C.				0.10	
	1 1	. , ,				
	Каким электропр	образом ооводность	классическая металлов?	электронная	теория	объясняет
6.	Запишит	е законы О	ма и Джоуля – Ј	Іенца в диффер	енциально	й форме.

Лабораторная работа № 4 ПРОВЕРКА ПРАВИЛ КИРХГОФА

Цель работы: научиться рассчитывать разветвленные цепи.

Оборудование: три амперметра, вольтметр, два постоянных сопротивления, переменное сопротивление, два источника напряжения.

Краткая теория

Электрическая цепь — это совокупность устройств и объектов, предназначенных для распределения, взаимного преобразования и передачи электрической энергии. Электрическая цепь состоит из отдельных частей, выполняющих определенные функции и называемые элементами цепи.

Схема цепи – геометрическое изображение соединения схемных элементов, отображающее соединение реальных элементов электрической цепи и ее свойства.

Ветвь электрической цепи — это такой участок цепи, который состоит из последовательно включенных источников ЭДС и сопротивлений, вдоль которого протекает один и тот же ток в любой момент времени.

Узлом разветвленной цепи называется точка, в которой сходится не менее трех проводников, причем токи, входящие в узел, считаются положительными, а выходящие из узла — отрицательными.

Первый закон Кирхгофа: алгебраическая сумма сил токов, сходящихся в узле, равна нулю.

$$\sum_{i=1}^{n} I_i = 0. (1)$$

Второй закон Кирхгофа: в любом замкнутом контуре, выбранном в разветвленной цепи, алгебраическая сумма произведений сил токов на сопротивления участков контура равна алгебраической сумме ЭДС, входящих в этот контур, т.е.

$$\sum_{i=1}^{n} I_i R_i = \sum_{i=1}^{n} \varepsilon_i \tag{2}$$

Чтобы расписать эту сумму, нужно учитывать правило знаков слагаемых. Для этого выбирают направление обхода контура (обычно по часовой стрелке).

Если направление обхода и ток совпадают, то произведение силы тока на сопротивление берется со знаком "+", в противном случае – со знаком "-". Если при обходе контура внутри источника идем от "-" к "+", то ЭДС берется со знаком "+", а в противном случае – со знаком "-".

ЭДС источника измеряется при помощи вольтметра, подключенного к зажимам источника тока при разомкнутой внешней цепи.

Внешние и внутренние сопротивления источников рассчитываются,

исходя из закона Ома для участка цепи: $I = \frac{U}{R}$, отсюда

$$R = \frac{U}{I},\tag{3}$$

и для полной замкнутой цепи:

$$I = \frac{\varepsilon}{R+r}$$
, отсюда $r = \frac{\varepsilon - U}{I}$. (4)

Выполнение работы

Измерение Задание 1. ЭДС тока источников прямым подключением клеммам К ИХ вольтметра.

$$\varepsilon_{l} =$$

$$\varepsilon_2 =$$

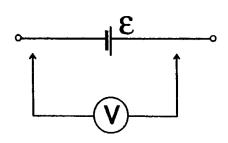


Рисунок 1

Задание 2. Расчет сопротивлений R_1 , и r_1 .


- 1. Соберите электрическую схему.
- 2. Измерьте силу тока I_I и напряжение U_I ,

$$I_I = U_I = U_I$$

3. Используя законы Ома, рассчитайте R_1 , и r_1 :

$$R_1 = \frac{U_1}{I_1} =$$

$$r_1 = \frac{\left(\varepsilon_1 - U_1\right)}{I_1} =$$

- 1. Соберите цепь по схеме.
- 2. Измерьте ток и напряжение

$$I_3 = U_3 =$$

$$R_3 = \frac{U_3}{I_3} =$$

$$r_2 = \frac{\left(\varepsilon_2 - U_3\right)}{I_3} =$$

Задание 4. Опытная проверка законов Кирхгофа.

- 1. Соберите разветвленную электрическую цепь.
- 2. Измерьте значения сил токов Iсопротивления R_1 , R_2 , R_3 и напряжения U_2 ,

$$I_1 = I_2 =$$

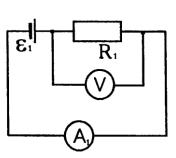


Рисунок 2

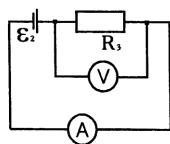
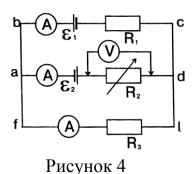



Рисунок 3

$$I_3 = U_2 =$$

3. Рассчитайте значение сопротивления

$$R_2 = \frac{U_2}{I_2} =$$

4. Рассчитайте значения

$$I_{1}R_{1=}$$
 ; $I_{1}r_{1=}$; $I_{2}r_{2=}$; $I_{3}R_{3=}$; $I_{2}R_{2}=$

5. Результаты измерений и вычислений занесите в таблицу 1.

Таблица 1

R_{I} , O_{M}	<i>R</i> ₃ , Ом	r ₂ , Ом	I_{l}, A	I_2 , A	<i>I</i> ₃ , <i>A</i>	$I_{l}R_{l}$, B	<i>I</i> ₂ <i>R</i> ₂ , B	<i>I₃R₃</i> , B	$I_l r_l$, B	<i>I</i> ₂ <i>r</i> ₂ , B	\mathcal{E}_{l} , B	ε ₂ , Β

- 6. Запишите первый закон Кирхгофа для узла «а». Подставив значение сил токов, проверьте его.
- 7. Запишите второй закон Кирхгофа для контуров abcda, adefa, abcdefa, проверьте его выполнение в ваших измерениях.

ВЫВОД:			

Контрольные вопросы

1. Узел разветвленной электрической цепи.

Дата защиты	Подпись преподавателя
Студент	Количество баллов
8. Сила тока, напряжение, сопротив	вление (формулы, единицы измерения).
7. Закон Ома для полной замкнутой	і цепи.
6. Закон Омая для участка цепи.	
5. Второй закон Кирхгофа.	
4. Первый закон Кирхгофа.	
3. Как выбираются знак ЭДС источ	ника тока?
2. Как выбираются знаки произведе	ений IR?

Лабораторная работа №5

ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА МЕТОДОМ МАГНЕТРОНА

ЦЕЛЬ: ознакомиться с одним из методов определения удельного заряда частицы и определить удельный заряд электрона.

ОБОРУДОВАНИЕ: регулируемый источник постоянного напряжения, стабилизированные источники постоянного напряжения, миниблок «Магнетрон», мультиметры.

Введение

Явления электронной эмиссии и разряда в газе позволяют получать потоки электронов и ионов, движущихся в вакууме практически без соударений. Электрические и магнитные поля, воздействуя на движущиеся заряженные частицы, изменяют их скорость и траекторию. В электрическом поле напряженности E на частицу, обладающую зарядом Q, действует сила

$$\vec{F}_{\mathfrak{I}} = Q\vec{E}. \tag{1}$$

В магнитном поле на движущуюся заряженную частицу действует сила Лоренца

$$\vec{F}_{\pi} = Q | \vec{v}, \vec{B} |, \tag{2}$$

где \vec{v} - скорость движения частицы; \vec{B} - вектор магнитной индукции.

Уравнение движения частицы в пространстве, где имеются и электрическое, и магнитное поля, согласно второму закону Ньютона имеет следующий вид:

$$\frac{d\vec{v}}{dt} = \frac{Q}{m} (\vec{E} + [\vec{v}, \vec{B}]). \tag{3}$$

Это уравнение показывает, что движение заряженной частицы в силовых полях зависит от отношения $\frac{Q}{m}$, которое называется *удельным зарядом* данной частицы. Следовательно, изучая движение различных заряженных частиц в электрическом и магнитном полях, можно определить удельный заряд частицы и тем самым получить сведения о природе частиц. Удельный заряд электрона можно определить различными методами. Наиболее распространенными из них являются метод магнитной фокусировки и метод магнетрона.

Метод измерений

В данной работе для определения удельного заряда электрона используют метод магнетрона.

Магнетрон - это двухэлектродная электронная лампа (диод), в которой управление током осуществляют внешним магнитным полем. Это поле создается соленоидом, внутри которого расположена лампа. Накаливаемый катод и

холодный анод лампы имеет форму коаксиальных (соосных) цилиндров

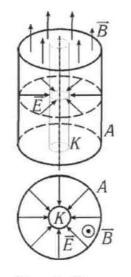


Рис. 1. Лампа

(см. рис. 1). Линии электрического ноля E внутри магнетрона направлены радиально от анода к катоду, а постоянное магнитное поле \vec{B} направлено вдоль оси катода. Таким образом, магнитное и электрическое поля взаимно перпендикулярны. Напряженность поля Е максимальна у катода. В случае, если катод имеет форму тонкой нити, величина Е, пропорциональная 1/г, быстро уменьшается с ростом расстояния г от катода. Поэтому изменение скорости электронов до значения, равного v, вблизи происходит, основном, катода, дальнейшем движении считать скорость онжом практически постоянной.

Электрон, ускоренный разностью потенциалов U, приобрел кинетическую энергию

 $mv^2/2=eU$ и имеет скорость

$$v = \sqrt{2Uelm} \tag{4}$$

В отсутствие магнитного поля электроны, эмитированные катодом, движутся под действием электрического поля \vec{E} прямолинейно в радиальных направлениях. При этом в анодной цепи протекает ток, величина которого зависит от анодного напряжения и тока накала катода. При помещении лампы в магнитное поле B на движущиеся электроны действует сила Лоренца. Она перпендикулярна линиям \vec{B} , т.е. лежит в одной плоскости с вектором скорости электрона \vec{v} , нормальна ему и сообщает частице центростремительное ускорение. Согласно второму закону Ньютона

$$evB = mv^2 / R. ag{5}$$

Таким образом, электрон в магнетроне будет двигаться по окружности, радиус которой

$$R = mv/eB \tag{6}$$

уменьшается с ростом индукции магнитного поля. На рис. 2 показано, как изменяются траектории движения электрона в цилиндрическом

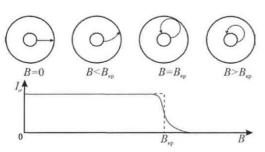


Рис. 2. Траектория движения электрон при увеличении магнитной индукции

магнетроне по мере увеличения магнитной индукции.

Существует *критическое* значение магнитной индукции $B_{\rm kp}$, при котором, как показано на рис. 2, траектории электронов касаются поверхности анода, а их радиус

$$R = r/2$$
,

где r – радиус анода. Согласно соотношениям (4) и (6) значение $B_{\rm kp}$

зависит от скорости электрона у и соответствующего

ей анодного напряжения U_a :

$$B_{\kappa p} = \frac{2}{r} \sqrt{\frac{2mU_a}{e}} \ . \tag{7}$$

Если величина $B < B_{\rm kp}$, то все электроны достигают анода и анодный ток имеет такое же значение, как и в отсутствие магнитного поля (горизонтальный участок графика на рис. 2). Если $B > B_{\rm kp}$, то электроны не долетают до анода и ток через лампу равен нулю. При $B = B_{\rm kp}$ ток дожжен резко снижаться (пунктирная линия на графике рис. 2), однако наблюдается плавный ход кривой. Это обусловлено рядом причин: неточная коаксиальность катода и анода, краевые эффекты, вылет электронов из катода с различными скоростями и др.

Определив критическое значение индукции магнитного поля $B_{\rm кp}$ и использовав соотношение (7), можно рассчитать удельный заряд электрона по формуле

$$\frac{e}{m} = \frac{8U_a}{(B_{\kappa p}r)^2} \,. \tag{8}$$

Индукцию B вычисляют по формуле для поля короткого соленоида:

$$B = \mu_0 IN(\cos\alpha_1 - \cos\alpha_2)/2l, \qquad (9)$$

где $\mu_0 = 4\pi \cdot 10^{-7} \, \Gamma$ н/м — магнитная постоянная; I — ток, текущий в обмотке; N

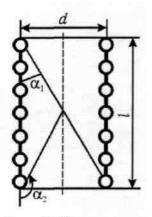


Рис. 3. Соленоид

— число витков соленоида; l — длина обмотки; a_1 и a_2 — углы, показанные на рис.3 при размещении лампы в центре соленоида,

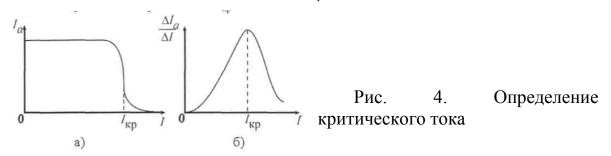
$$\cos\alpha_1 = -\cos\alpha_2 = I/\sqrt{I^2 + d^2} ,$$

где d — диаметр соленоида.

Подставляя значения косинусов в формулу (9), получаем критическую величину магнитной индукции:

$$B_{sp} = \mu_0 I_{sp} N / \sqrt{I^2 + d^2} \quad , \tag{10}$$

где $I_{\text{кр}}$ — значение тока в соленоиде, соответствующее критическому значению магнитной индукции $B_{\text{кр}}$.


С учётом выражения (10) расчётная формула (8) для определения удельного заряда электрона принимает

следующий вид:

$$\frac{e}{m} = \frac{8U_a(l^2 + d^2)}{(\mu_0 r N I_{_{KD}})^2}.$$
 (11)

Для определения критического тока $I_{\rm kp}$ используют экспериментальную зависимость анодного тока от тока в соленоиде: $I_{\rm a}=f(I)$ (рис. 4a), которая по виду подобна зависимости $I_{\rm a}=f(B)$: при критическом токе в соленоиде наблюдается резкое снижение анодного тока $I_{\rm a}$.

Крутизну кривой $I_a = f(I)$ показывает отношение приращений анодного тока и тока с соленоиде $\frac{\Delta I_a}{\Delta I}$. При этом максимум кривой $\frac{\Delta I_a}{\Delta I} = f(I)$ (рис. 4б) соответствует искомому значению $I_{\rm kp}$.

Описание установки

Для определения удельного заряда электрона методом магнетрона собирают электрическую цепь, схема которой приведена на рис. 5, монтажная схема - на рис. 6.

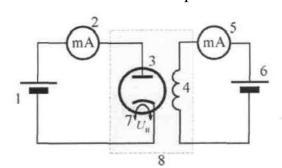


Рис. 5. Электрическая схема:

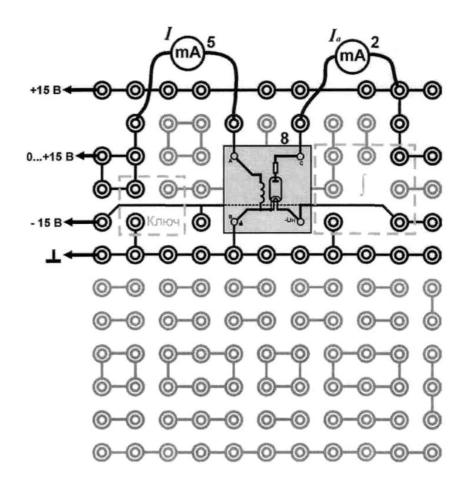
1 — источник постоянного напряжения «+15 В»; 2 — мультиметр для измерения анодного тока (*режим А ... 2mA*, *входы СОМ*,*mA*); 3 — вакуумный диод; 4 —соленоид; 5 — мультиметр для измерения тока соленоида (*режим А ... 200mA*, *входы*

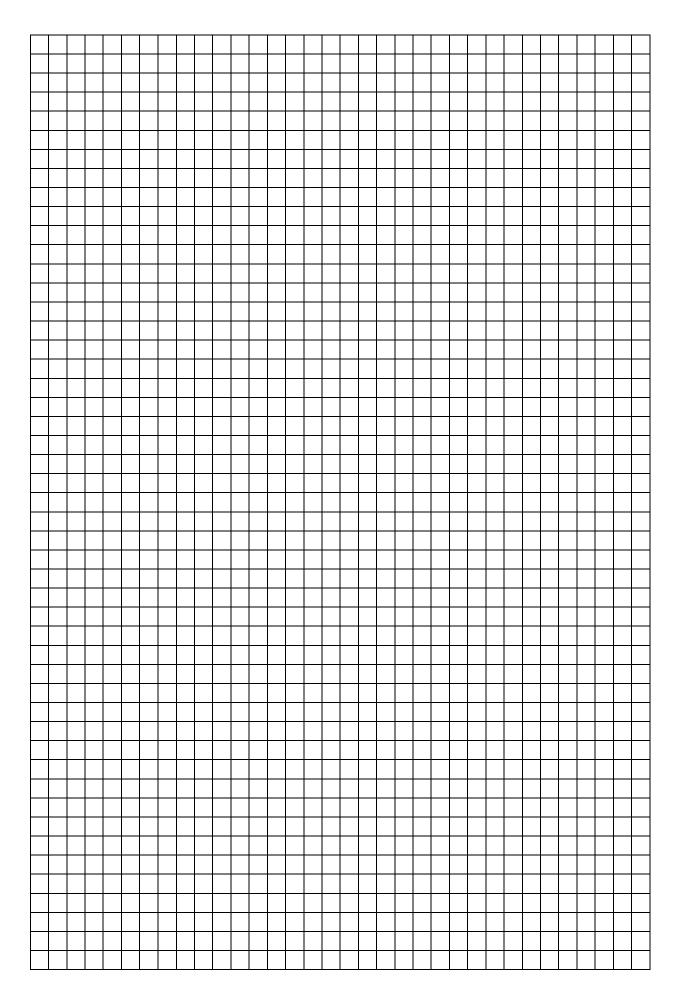
COM,A); 6 — регулируемый источник постоянного напряжения «0...+15 В»; 7 — напряжение накала катода $U_{\rm H}$; 8 — миниблок «Магнетрон»

Вакуумный диод 3 подключают к источнику постоянного напряжения $^{\prime\prime}$ +15 В». Анодный ток лампы $I_{\rm a}$ измеряют цифровым мультиметром 2. Напряжение $U_{\rm h}$ на нить накала лампы подают от источника постоянного напряжения $^{\prime\prime}$ -15 В». Диод установлен внутри соленоида так, что ось анода лампы совпадает с осью соленоида. Соленоид 4 создает магнитное поле, индукцию которого регулируют путем изменения тока I в обмотке с помощью кнопок установки напряжения $^{\prime\prime}$ 0...15 В» (поз. 14, рис. 1, стр. 6). Ток в обмотке соленоида измеряют мультиметром 5.

Выполнение работы

- 1. Собрать электрическую цепь по схеме рис.6.
- 2. Включить питание генераторов напряжений и блока мультиметров.
- 3. Кнопками установки напряжения (0...15 В) установите ток 100 мА в обмотке электромагнита и запишите значение анодного тока.
- 4. Проведите аналогичные измерения увеличивая ток электромагнита на 5 мА до 160 мА.
- 5. Проведите аналогичные измерения при уменьшении тока электромаг-нита от 200 до 100 мА.
- 6. Выключите питание.
- 7. Результаты измерений занести в таблицу.




Рис. 6. Монтажная схема

Таблица

Тамлица										
	Параметры магнетрона: $d = 37 \text{ мм}$, $\ell = 36 \text{ мм}$, $N = 2800 \text{ витков}$, $r = 3 \text{ мм}$,									
$\mathbf{U} = 15 \mathbf{B} .$										
$N_{\underline{0}}$	І,мА	Увелич.	Уменьш.	$I_{a,cp}$, MA	ΔI_a ,	ΔI , MA	ΔI_a			
п/п		I_a , MA	I_a , MA	7 1	мА		$\overline{\Delta I}_{,MA}$			
1.	100									
2.	105									
3.	110									
4.	115									
5.	120									
6.	125									
7.	130									
8.	135									
9.	140									
10.	145									
11.	150									
12.	155									
13.	160									

Обработка результатов

- 1. Рассчитать среднее значение анодного тока $I_{a,cp}$. По данным таблицы рассчитать изменение анодного тока ΔI_a по формуле $\Delta I_a = I_i I_{i+1}$ и величину производной $\frac{\Delta I_a}{\Lambda I}$. Результаты занести в таблицу.
- 2. По данным таблицы построить два графика зависимости $I_a = f\left(I\right)$ и $\frac{\Delta I_a}{\Delta I} = f\left(I\right).$ По положению максимума на втором графике определить критическое значение тока электромагнита I_{kp} .
- 3. По формуле $\frac{e}{m} = \frac{8U\left(\ell^2 + d^2\right)}{\left(\mu_0 RNI_{kp}\right)^2}$ рассчитать удельный заряд электрона.
- 4. Сравните полученное значение с табличным (по современным данным для электрона $\frac{e}{m} = 1,76 \cdot 10^{11} \, \frac{\mathrm{K} \mathrm{J}}{\mathrm{k} \mathrm{\Gamma}}$) и определите относительную погрешность измерения.

Дa	та защиты Подпись преподавателя
Cn	пудент Количество баллов
5.	Укажите способ определения критического значения тока в лабораторной работе.
5	Vкажите способ определения критического значения тока в
4.	От чего зависит форма траектории электрона в магнетроне? Покажите форму траектории электрона при различных значениях магнитной индукции.
3.	Как определяется направление силы Лоренца, действующей на заряженную частицу, движущуюся в магнитном поле?
2.	В чем состоит существенное отличие магнитного поля от электрического?
1.	Запишите формулу для силы, действующей на заряженную частицу в электромагнитном поле. Какими компенентами она определяется?

Лабораторная работа № 6

ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ЖИДКОСТИ С ПОМОЩЬЮ РЕФРАКТОМЕТРА

Цель работы: определить показатель преломления жидкости рефрактометрическим методом.

Оборудование: рефрактометр, дистиллированная вода, растворы сахара.

Ход работы

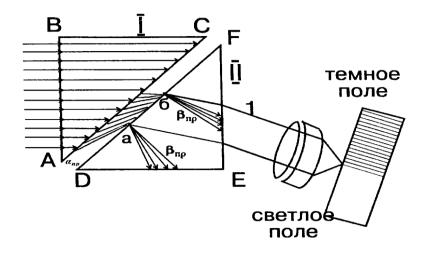
Задание. Исследование зависимости показателя преломления раствора от его концентрации.

- 1. Снимите пробку с окна верхней камеры, окно нижней камеры должно быть закрыто.
- 2. Откройте верхнюю камеру и промойте дистиллированной водой поверхности измерительной и осветительной призм и насухо вытерете чистой льняной салфеткой.
- 3. Оплавленным концом стеклянной палочки нанесите на плоскость измерительной призмы одну две капли дистиллированной воды и закройте верхнюю камеру.
- 4. Смещая осветитель, луч света направьте в окно верхней камеры.
- 5. Перемещением рукоятки с окуляром (внутри прибора вместе с рукояткой перемещается механизм наведения) вдоль шкалы вверх или вниз введите в поле зрения границу светотени.
- 6. Резкость границы светотени, штрихов шкалы и перекрестия сетки установите вращением гайки окуляра по глазу наблюдателя.
- 7. Вращением рукоятки дисперсионного компенсатора устраните окрашенность границы светотени.
- 8. Поворотом рычага осветителя и вращением осветителя на оси добейтесь максимально контрастной границы светотени.
- 9. Перемещая рукоятку с окуляром, границу светотени подведите к центру перекрестия сетки и по границе светотени произвести отсчет по шкале показателей преломления.
- 10. С помощью рефрактометра определите показатели преломления растворов различных концентраций.
- 11. Результаты измерений занесите в таблицу:

C, %			
n			

12. Изобразите графически зависимость n = f(C).

13.	По	наклону	полученного	графика	определите	удельный
ПО	казате	ль преломл	ения исследова	нного раст	вора жидкости	ī.


14.	Вывод:			

Контрольные вопросы

- 1) Что называется абсолютным и относительным показателем преломления?
- 2) Что понимается под преломлением (рефракцией) света? Какова причина данного явления?
- 3) Как формулируется закон преломления лучей света на границе двух сред.
- 4) При каком условии луч света проходит две оптически разнородные среды без прелоления?

5)	Сравните	скорости	света	В	двух	средах,	если	угол	падения	больше
	угла прело	эмления.								

- 6) При каких условиях наблюдается явление полного внутреннего отражения?
- 7) В чем заключается явление полного внутреннего отражения?
- 8) Что называется предельным углом полного внутреннего отражения?
- 9) Объясните принцип действия рефрактометра.

10) Где используется рефрактометр?

Студент	Количество баллов
Дата защиты	Подпись преподавателя

Лабораторная работа № 7 ОПРЕДЕЛЕНИЕ ОПТИЧЕСКОЙ СИЛЫ ЛИНЗЫ

Цель работы: определить оптическую силу собирающей и рассеивающей линз.

Оборудование: оптическая скамья, осветитель, собирающая и рассеивающая линзы.

Ход работы

1. На оптической скамье установите собирающую линзу. Перемещая линзу, на экране добейтесь четкого увеличенного изображения предмета (предмет располагается на расстоянии, большем фокусного расстояния) и измерьте расстояния

 $d_I = M$ $f_I = M$

2. Рассчитайте значение фокусного расстояния линзы

3. $F_1 = \frac{d_1 \cdot f_1}{d_1 + f_1} =$

M

4. Перемещая линзу, получите на экране четкое уменьшенное изображение предмета, измерьте расстояния

 $d_2 =$ M $f_2 =$ M

5. Рассчитайте фокусное расстояние линзы

 $F_2 = \frac{d_2 \cdot f_2}{d_2 + f_2} =$

M

6. Определите среднее значение фокусного расстояния

 $\langle F_c \rangle =$

7. Рассчитайте оптическую силу собирающей линзы.

 $D_c = \frac{1}{\langle F_c \rangle} =$

дптр

8. Вместе с собирающей установите рассеивающую линзу, получив систему линз, и повторите те же измерения и расчеты, что и с собирающей линзой.

Увеличенное изображение:

$$d_3 = M$$
 $f_3 = M$
 $F_3 = M$

Уменьшенноеизображение:

$$d_4= egin{array}{ccc} M & & & M \ f_4= & & M \ F_4= & & M \ <\!\!F\!\!>_{cucm}= & & M \end{array}$$

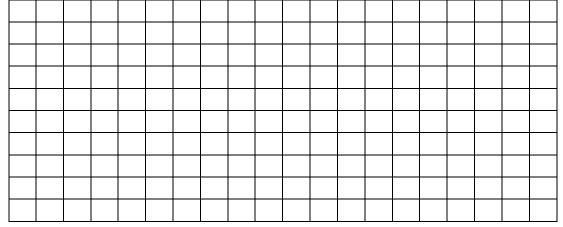
$$D_{cucm} = \frac{1}{< F_{cucm}>} =$$

дптр

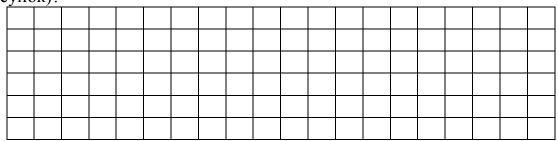
9. Рассчитайте оптическую силу и фокусное расстояние рассеивающей линзы

$$D_P = D_{cucm}$$
 - $D_C =$ дптр $F_p = rac{1}{D_p}$

10. Результаты измерений и расчеты занесите в таблицу:


Total estimation in succession and authority.								
Изображение предмета	<i>d</i> , м	<i>f</i> , м	F, M	$\langle F \rangle$, M	D, дптр			
1. Собирающая линза:								
а) увеличенное								
б) уменьшенное								
2. Система линз:								
а) увеличенное								
б) уменьшенное								
3. Рассеивающая линза	-	-	-					

11. Вывод:	


Контрольные вопросы

1) Что называется линзой?

2) Какие бывают виды линз (рисунок)?

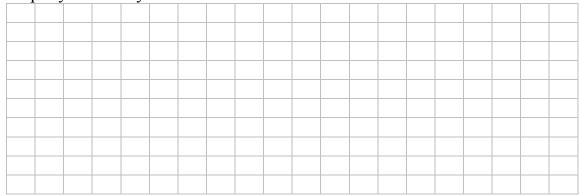
- 3) Что называется главной оптической осью линзы (определение, рисунок вопрос 4)?
- 4) Что называется фокусом линзы? Где он находится (определение, рисунок)?

- 5) Как записывается формула линзы?
- 6) Что называется оптической силой линзы? Единица измерения.
- 7) Написать формулу тонкой линзы?
- 8) Чему равно линейное увеличение тонкой линзы?
- 9) Зависит ли фокусное расстояние линзы от среды, в которой она находится?
- 10) Какое практическое применение находят линзы?

11) Построение в линзах (по заданию преподавателя). Собирающая линза

Сооирающая линза

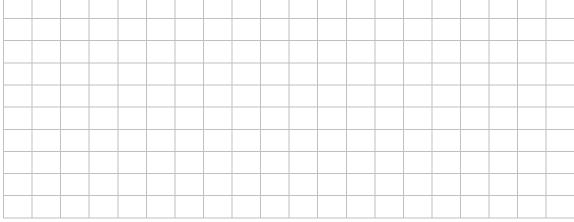
Студент	Количество баллов
Дата защиты	Подпись преподавателя


Лабораторная работа №8 ИНТЕРФЕРЕНЦИЯ СВЕТА

Цель работы: изучить явление интерференции (опыт Юнга), моделируя явление на ПЭВМ.

Оборудование: компьютер, программа.

Ход работы


- 1. Включите компьютерную программу.
- 2. Зарисуйте схему опыта.

3. Задания выполняются по значениям из таблицы (задает преподаватель).

λ, ΗΜ	d, MM	L, cm
360	1,0	300
400	1,5	330
450	2,0	360
500	3,0	390
560	4,0	420
630	4,5	450
700	5,0	480

4. Схематично зарисуйте интерференционную картину.

5. Для любого максимума расчитайте условие коортинаты

$$(x_m)_{meop} = \frac{m \cdot L \cdot \lambda}{d} =$$

6. Определите координату соответствующего максимума на интерференционной картине:

$$(x_m)_{\mathcal{SKCN}} =$$

7. Определите погрешность эксперимента

$$\varepsilon_{x_m} = \frac{\left| (x_m)_{meop} - (x_m)_{skcn} \right|}{(x_m)_{meop}} \cdot 100\% =$$

8. Рассчитайте ширину интерференционной полосы

$$\Delta x_{meop} = \frac{L \cdot \lambda}{d} =$$

9. Измерьте ширину интерференционной полосы

$$\Delta x_{_{\mathfrak{I}KCn}} =$$

10. Определите погрешность эксперимента

$$\varepsilon_{\Delta x} = \frac{\left|\Delta x_{meop} - \Delta x_{_{9KCN}}\right|}{\Delta x_{meop}} \cdot 100\% =$$

11. Сделайте вывод о проделанной работе:______

Вопросы для защиты работы:

- 1) Что называют электромагнитной волной?
- 2) Какие волны называют когерентными?
- 3) Какие волны называют монохроматическими?

4)	Дат	ъоI	пред	целє	ение	е ин	тер	фер	енц	ции	свет	га.								
	Зап кол		ть ния.		квqі	кен	ие	ДЈ	Я	ИН	тен	сив	нос	ТИ	p	езул	ІЬТИ	ірун	още	эго
6)	Зап	иса	ть у	сло	вие	инт	герс	þep	енц	ион	НОГ	О Ма	аксі	иму	ма.					
7)	Зап	иса	ть у	сло	вие	инт	герс	þep:	енц	ион	НОГ	O MI	ини	мум	ла.					
	_										инт)р у		_				a (c	бъя	сни	ІТЬ
																				<u> </u>
										-										
		1								1										
9)	Вч	ем з	закл	ЮЧа	аетс	ЯМ	ето	д Ю	Энга	a (c	рис	унк	ом)	?	1	1	1	l	1	
уден	ım_									Ko.	пич	ecm	во (бал.	лов_					
та з	ащі	ить	<i>l</i>						I 47		nuci	ь пр	eno	дав	am	еля_				_

Лабораторная работа №9 ДИФРАКЦИЯ СВЕТА

Цель работы: изучить явление дифракции на круглом отверстии (дифракция Френеля), моделируя его на ПЭВМ, определение длины световой волны.

Оборудование: компьютер, программа, дифракционная решетка, лазер, оптическая скамья.

Задание. Изучение явления дифракции Френеля на круглом отверстии.

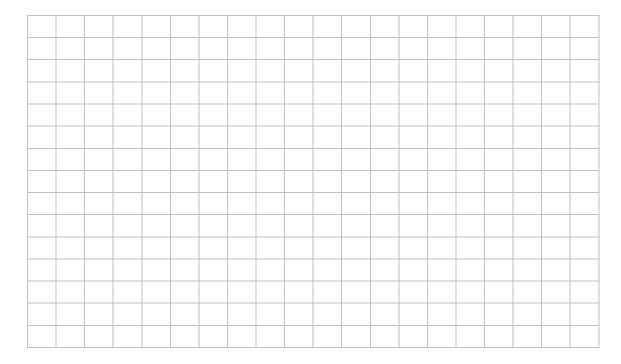
Ход работы

- 1. Включите компьютерную программу.
- 2. Зарисуйте схему опыта.

3. Задания выполняются по значениям из таблицы (задает преподаватель).

Вариант	λ, нм	D, мм	z, CM
1	360	0,8	40
2	400	1,0	80
3	450	1,2	120
4	500	1,4	160
5	560	1,6	40
6	630	1,8	80
7	700	2,0	120

4. Зарисуйте зоны Френеля.



4. Сделайте расчеты по предположению того, что будет в центре дифракционной картины

$$r_m = \frac{D}{2} =$$

$$m = \frac{r_m^2}{z \cdot \lambda} =$$

5. Схематично зарисуйте дифракционную картину.

6. Сделайте вывод о проделанной работе:_____

Вопросы для защиты работы: Что называется дифракцией света? 1) 2) Сформулировать принцип Гюйгенса. Сформулировать принцип Гюйгенса-Френеля. 3) В чем заключается метод зон Френеля? 4) 5) Записать формулу для определения радиуса зоны Френеля. 6) Зонная пластинка.

Дата защиты Подпись преподавателя		
Стус	дент Количество баллов	
12)	Условие максимума для дифракционной решетки.	
11)	Условие минимума для дифракционной решетки.	
ŕ		
10)	Что такое период дифракционной решетки?	
9)	Что такое дифракционная решетка?	
8)	Описать дифракцию Френеля на диске.	
7)	Описать дифракцию Френеля на круглом отверстии.	

Учебно-методическое обеспечение дисциплины

а) основная литература

- 1. ЭБС «Znanium» Ильюшонок, А.В. Физика: учеб. пособие / А.В. Ильюшонок [и др.]. Москва: Минск: ИНФРА-М: Новое знание, 2013. 600 с. (Гр. Республики Беларусь).
- 2. ЭБС «Znanium» Хавруняк, В.Г. Курс физики: учеб. пособие / В. Г. Хавруняк. Москва: ИНФРА-М: Новое знание, 2014. 400 с. (Гр. НМС).
- 3. ЭБС «Znanium» Кузнецов, С.И. Физика: Механика. Механические колебания и волны. Термодинамика.: учеб. пособие / С.И. Кузнецов. 4-е изд.; испр. и доп. Москва: Вузовский учебник: ИНФРА-М: Вузовский вестник, 2014. 248 с. (Гр. НМС).
- 4. Трофимова, Т.И. Физика: учебник для студентов вузов по техническим направлениям подготовки /Т.И.Трофимова, М.: Академия, 2012. 320 с. (Высшее профессиональное образование. Бакалавриат).
- 5. Трофимова, Т.И. Курс физики. Задачи и решения: учебное пособие для студентов вузов по техническим направлениям и специальностям / Т.И.Трофимова, А.В.Фирсов 4-е изд., испр. М.: Академия, 2011. 592 с. -(Высшее профессиональное образование. Бакалавриат.Гр.).
- 6. Копылова, О. С.Курс общей физики : учеб. пособие / О. С. Копылова ; СтГАУ. Ставрополь : АГРУС, 2017. 300 с. ISBN 978-5-9596-1290-0.
- 7. Крахоткин, В. И. Механика и молекулярная физика: учеб. пособие для студентов вузов по направлению 110300 Агроинженерия / СтГАУ. Ставрополь: АГРУС, 2006. 208 с. (Гр. МСХ РФ).
- 8. Крахоткин, В. И. Электричество и магнетизм : учеб. пособие для студентов вузов по спо направлению 110300 Агроинженерия / СтГАУ. Ставрополь : АГРУС, 2006. 220 с. (Гр. МСХ РФ).
- 9. Стародубцева, Γ . П. Оптика и строение атома : учеб. пособие для студентов вузов по направлению 110300 "Агроинженерия" / Ст Γ АУ. Ставрополь : А Γ РУС, 2007. 172 с. (Γ p. MCX Р Φ).

б) дополнительная литература

- 1. Крахоткин, В.И. Лабораторный практикум по электродинамике /Крахоткин В.И., Стародубцева Г.П., Хащенко А.А., Ковалева Г.Е.— Ставрополь Цех оперативной печати СНИИЖК, 2011-40 с.
- 2. Крахоткин, В.И. Лабораторный практикум по оптике/Крахоткин В.И., Стародубцева Г.П., Хащенко А.А., Ковалева Г.Е.—Ставрополь—Цех оперативной печати СНИИЖК, 2011-40 с.
- 3. ЭБС «Znanium» Врублевская, Г.В. Физика. Практикум: учеб. пособие / Г.В. Врублевская [и др.]. Москва: Минск: ИНФРА-М: Новое знание, 2012. 286 с.
- 4. Яворский, Б. М. Справочник по физике для инженеров и студентов вузов. 8-е изд., перераб. и испр. М.: ОНИКС; Мир и Образование, 2008. 1056с.: ил.
- 5. Вестник АПК Ставрополья (периодическое издание).
- 6. Научное обозрение (периодическое издание).

Перечень ресурсов информационно-телекоммуникационной сети "Интернет" (далее - сеть «Интернет»), необходимых для освоения дисциплины.

- 1. Классная!физика для любознательных экономика, социология, менеджмент занятости [Электронный ресурс]. Режим доступа: // http://class-fizika.narod.ru/snakom 1.htm/
- 2. Портал естественных наук [Электронный ресурс]. Режим доступа: http:// e-science.ru/physics/
- 3. Физика в анимациях [Электронный ресурс]. Режим доступа: http://physics.nad.ru/Physics/Cyrillic/index.htm
- 4. Электронные издания по физике [Электронный ресурс]. Режим доступа: http://mdito.pspu.ru/?q=node/75
- 5. Открытая физика [Электронный ресурс]. Режим доступа: http://physics.ru/modules.php?name=main_menu&op=show_page&page=book.inc
- 6. Открытая физика [Электронный ресурс]. Режим доступа: http:// www.physics.ru/
- 7. История физики [Электронный ресурс]. Режим доступа: http:// alhimik.ru
- 8. Детские вопросы [Электронный ресурс]. Режим доступа: http:// elementy.ru
- 9. Естественно –научный образовательный портал [Электронный ресурс]. Режим доступа: http:// www.en.edu.ru/catalogue/363
- 10. Архив учебных программ и презентаций [Электронный ресурс]. Режим доступа: http://www.rusedu.ru/files.php?cat=12&cmd=all&sort=&order=&page=3
- 11. Физика+ по Ландсбергу [Электронный ресурс]. Режим доступа: http:// physel.ru/
- 12. Анимации, лабораторные [Электронный ресурс]. Режим доступа: http://www.radweb.ru/
- 13. Просто о сложном [Электронный ресурс]. Режим доступа: http:// prosto-o-slognom.ru/index.html

На информационном сайте вуза, сайте кафедры в личном кабинете преподавателя размещены электронные конспекты лекций, экзаменационные вопросы, лабораторные практикумы и рабочие тетради, применяемые для познавательной деятельности студентов.